SAS Analysis Examples Replication C6

* SAS Analysis Examples Replication for ASDA 2nd Edition
* Berglund April 2017
* Chapter 6

libname d "P:\ASDA 2\Data sets\nhanes 2011_2012";
ods listing;
ods graphics off;
options nodate nonumber ls=125 ps=68;
ods rtf style=minimal bodytitle;

data c6_nhanes;
set d.nhanes1112_sub_8aug2016;
run;
title "Example 6.1: Estimating the Proportion of the U.S. Adult Population with an Irregular Heart Beat. ";
* wald confidence limit is default;
proc surveyfreq data=c6_nhanes;
strata sdmvstra; cluster sdmvpsu; weight wtmec2yr;
tables age18p*irregular / deff row cl;
run;
* logit confidence limit;
proc surveyfreq data=c6_nhanes;
strata sdmvstra; cluster sdmvpsu; weight wtmec2yr;
tables age18p*irregular / deff row cl(logit);
run;
* means for proportion of 0/1 variable;
proc surveymeans data=c6_nhanes;
strata sdmvstra; cluster sdmvpsu; weight wtmec2yr;
domain age18p;
var irregular;
run;
title "Example 6.2: Estimating the Proportion of U.S. Adults by Race and Ethnicity using NHANES data. ";
proc surveyfreq data=c6_nhanes;
strata sdmvstra; cluster sdmvpsu; weight wtmec2yr;
tables age18p*ridreth1 / nowt nocellpercent row(deff cl);
run;
;
proc surveyfreq data=c6_nhanes;
strata sdmvstra; cluster sdmvpsu; weight wtmec2yr;
tables age18p*bp_cat / nowt nocellpercent row(deff cl);
run;
libname russia "P:\ASDA 2\Data sets\ESS6 Russia";
data c6_russia;
set russia.ess6_russia_20aug2016;
run;
title "Example 6.4: A Goodness of Fit Test for Proportions of Russians age 15+ by Marital Status."
;
proc surveyfreq data=c6_russia;
strata stratify; cluster psu; weight pspwght;
tables marcat / row lrchisq(secondorder) testp=(.5 .25 .25);
run;
title "Example 6.5: Pie Charts and Vertical Bar Charts of the Estimated Proportions of Russians age 15+ by Marital Status."
;
* Note PROC SGPLOT does not support weighted plots or pie charts so here we use a vertical bar with weight example from PROC FREQ instead;
ods graphics on;
proc freq data=c6_russia;
tables marcat / plots=freqplot (scale=percent);
weight pspwght;
run;
ods graphics off;
libname ncsr "P:\ASDA 2\Data sets\ncsr";
data c6_ncsr;
set ncsr.ncsr_sub_13nov2015;
run;
title "Example 6.6: Estimation of Total and Row Proportions for the Crosstabulation of Gender and Lifetime Major Depression Status (Source: NCS-R)."
;
proc surveyfreq data=c6_ncsr;
strata sestrat; cluster seclustr; weight ncsrwght;
tables sex*mde / deff chiq (secondorder);
run;
proc surveyfreq data=c6_ncsr;
strata sestrat; cluster seclustr; weight ncsrwght;
tables sex*mde / row(deff cl) chiq(secondorder);
run;
title " Example 6.7: Comparing the Proportions of U.S. Adult Men and Women with Lifetime Major Depression.";
* linear contrast of male v. female mde done with LSMEANS / DIFF option in PROC SURVEYREG;
proc surveyreg data=c6_ncsr;
strata sestrat; cluster seclustr; weight ncsrwtsh;
class sex;
model mde = sex / solution;
lsmeans sex /diff;
run;

/* Example 6.8: Testing the Independence of MDE and Gender in U.S. Adults Using the NCS-R data. */
proc surveyfreq data=c6_ncsr;
strata sestrat; cluster seclustr; weight ncsrwtsh;
tables sex*mde / chisq(secondorder);
run;
/* svy: tab sex mde, se ci deff;*/
data c6_ncsr1;
set c6_ncsr;
* create indicator for subpopulation of interest;
 age18_28=0; if 18<=age<=28 then age18_28=1;
run;

/* Example 6.9: Testing the Independence of Alcohol Dependence and Education Level in Young Adults (Ages 18-28) using the NCS-R data. */
proc surveyfreq data=c6_ncsr1;
strata sestrat; cluster seclustr; weight ncsrwtlg;
tables age18_28*ed4cat*ald / nocellpercent row chisq chisq(secondorder);
run;

/* Example 6.10: Simple Logistic Regression to Estimate the NCS-R Male/Female Odds Ratio for Lifetime Major Depressive Episode. */
proc surveylogistic data=c6_ncsr;
strata sestrat; cluster seclustr; weight ncsrwtsh;
model mde(event='1') = sexm;
run;
/* Example 6.11: Using the NCS-R Data to Estimate and Test the Association between Gender and Depression in the U.S. Adult Population when controlling for Age.*/
 * NOTE: this is done using SUDAAN in book as SAS does not provide a SURVEY procedure for this test
*/
/* Example 6.12: A Simple Log-linear Model to Test the Association between Lifetime Major Depression Episode and Sex.*/
 * NOTE: done in IVEware and R in book since SAS does not offer a SURVEY procedure for Log-Linear models;*/
ods rtf close;

The SURVEYFREQ Procedure

Data Summary

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Strata</td>
<td>14</td>
</tr>
<tr>
<td>Number of Clusters</td>
<td>31</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>9756</td>
</tr>
<tr>
<td>Number of Observations Used</td>
<td>9338</td>
</tr>
<tr>
<td>Number of Obs with Nonpositive Weights</td>
<td>418</td>
</tr>
<tr>
<td>Sum of Weights</td>
<td>306590681</td>
</tr>
</tbody>
</table>

Table of age18p by irregular

<table>
<thead>
<tr>
<th>age18p</th>
<th>irregular</th>
<th>Frequency</th>
<th>Weighted Frequency</th>
<th>Std Err of Wgt Freq</th>
<th>Std Err of Percent</th>
<th>95% Confidence Limits for Percent</th>
<th>Design Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3642</td>
<td>72706140</td>
<td>5745470</td>
<td>0.7485</td>
<td>22.9582, 26.1164</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>11</td>
<td>305580</td>
<td>116221</td>
<td>0.1031</td>
<td>0.0220, 0.1843</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>3653</td>
<td>73011720</td>
<td>5775234</td>
<td>0.7560</td>
<td>23.0454, 26.2355</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>5264</td>
<td>219630508</td>
<td>13382261</td>
<td>0.7705</td>
<td>72.4966, 75.7479</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>110</td>
<td>3666308</td>
<td>459959</td>
<td>0.1254</td>
<td>0.9727, 1.5019</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>5374</td>
<td>223296816</td>
<td>13647988</td>
<td>0.7560</td>
<td>73.7645, 76.9546</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>121</td>
<td>3971887</td>
<td>522982</td>
<td>1.3405</td>
<td>1.0324, 1.6485</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>9027</td>
<td>296308536</td>
<td>18854873</td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequency Missing = 311

Table of age18p by irregular

<table>
<thead>
<tr>
<th>age18p</th>
<th>irregular</th>
<th>Row Percent</th>
<th>Std Err of Row Percent</th>
<th>95% Confidence Limits for Row Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>99.5815</td>
<td>0.1537</td>
<td>99.2571, 99.9058</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.4185</td>
<td>0.1537</td>
<td>0.0942, 0.7429</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>98.3581</td>
<td>0.1678</td>
<td>98.0041, 98.7121</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.6419</td>
<td>0.1678</td>
<td>1.2879, 1.9959</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequency Missing = 311

The SURVEYFREQ Procedure

Data Summary

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Strata</td>
<td>14</td>
</tr>
<tr>
<td>Number of Clusters</td>
<td>31</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>9756</td>
</tr>
<tr>
<td>Number of Observations Used</td>
<td>9338</td>
</tr>
<tr>
<td>Number of Obs with Nonpositive Weights</td>
<td>418</td>
</tr>
<tr>
<td>Sum of Weights</td>
<td>306590681</td>
</tr>
</tbody>
</table>

Table of age18p by irregular

<table>
<thead>
<tr>
<th>age18p</th>
<th>irregular</th>
<th>Frequency</th>
<th>Weighted Frequency</th>
<th>Std Err of Wgt Freq</th>
<th>Percent</th>
<th>Std Err of Percent</th>
<th>95% Confidence Limits for Percent</th>
<th>Design Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3642</td>
<td>72706140</td>
<td>5745470</td>
<td>24.5373</td>
<td>0.7485</td>
<td>22.9927 - 26.1505</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11</td>
<td>305580</td>
<td>116221</td>
<td>0.1031</td>
<td>0.0385</td>
<td>0.0469 - 0.2264</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>3653</td>
<td>73011720</td>
<td>5775234</td>
<td>24.6404</td>
<td>0.7560</td>
<td>23.0803 - 26.2700</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>5264</td>
<td>219630508</td>
<td>13382261</td>
<td>74.1222</td>
<td>0.7705</td>
<td>72.4636 - 75.7144</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>110</td>
<td>3666308</td>
<td>459959</td>
<td>1.2373</td>
<td>0.1254</td>
<td>1.0988 - 1.1617</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5374</td>
<td>223296816</td>
<td>13647988</td>
<td>75.3596</td>
<td>0.7560</td>
<td>73.7300 - 76.9197</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>8906</td>
<td>292336649</td>
<td>18562605</td>
<td>98.6595</td>
<td>0.1460</td>
<td>98.3139 - 98.9351</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>121</td>
<td>3971887</td>
<td>522982</td>
<td>1.3405</td>
<td>0.1460</td>
<td>1.0649 - 1.6861</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>9027</td>
<td>296308536</td>
<td>18854873</td>
<td>100.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Logit confidence limits are computed for percents.

Frequency Missing = 311

Table of age18p by irregular

<table>
<thead>
<tr>
<th>age18p</th>
<th>irregular</th>
<th>Row Percent</th>
<th>Std Err of Row Percent</th>
<th>95% Confidence Limits for Row Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>99.5815</td>
<td>0.1537</td>
<td>99.0930 - 99.8074</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.4185</td>
<td>0.1537</td>
<td>0.1926 - 0.9070</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>98.3581</td>
<td>0.1678</td>
<td>97.9639 - 98.6770</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.6419</td>
<td>0.1678</td>
<td>1.3230 - 2.0361</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Logit confidence limits are computed for percents.

Frequency Missing = 311

The SURVEYMEANS Procedure

<table>
<thead>
<tr>
<th>Data Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Strata</td>
</tr>
<tr>
<td>Number of Clusters</td>
</tr>
<tr>
<td>Number of Observations</td>
</tr>
<tr>
<td>Number of Observations Used</td>
</tr>
<tr>
<td>Number of Obs with Nonpositive Weights</td>
</tr>
<tr>
<td>Sum of Weights</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>irregular</td>
</tr>
</tbody>
</table>

The SURVEYMEANS Procedure

<table>
<thead>
<tr>
<th>Domain Statistics in age18p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age >=18: 1=Yes 0=No Variable</td>
</tr>
<tr>
<td>0 irregular 1=yes 0=no</td>
</tr>
<tr>
<td>1 irregular 1=yes 0=no</td>
</tr>
</tbody>
</table>
Example 6.2: Estimating the Proportion of U.S. Adults by Race and Ethnicity using NHANES data.

The SURVEYFREQ Procedure

<table>
<thead>
<tr>
<th>Data Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Strata</td>
</tr>
<tr>
<td>Number of Clusters</td>
</tr>
<tr>
<td>Number of Observations</td>
</tr>
<tr>
<td>Number of Observations Used</td>
</tr>
<tr>
<td>Number of Obs with Nonpositive Weights</td>
</tr>
<tr>
<td>Sum of Weights</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table of age18p by RIDRETH1</th>
</tr>
</thead>
<tbody>
<tr>
<td>age18p</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

The SURVEYFREQ Procedure

<table>
<thead>
<tr>
<th>Data Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Strata</td>
</tr>
<tr>
<td>Number of Clusters</td>
</tr>
<tr>
<td>Number of Observations</td>
</tr>
<tr>
<td>Number of Observations Used</td>
</tr>
<tr>
<td>Number of Obs with Nonpositive Weights</td>
</tr>
<tr>
<td>Sum of Weights</td>
</tr>
</tbody>
</table>

Table of age18p by bp_cat

<table>
<thead>
<tr>
<th>age18p</th>
<th>bp_cat</th>
<th>Frequency</th>
<th>Row Percent</th>
<th>Std Err of Row Percent</th>
<th>95% Confidence Limits for Row Percent</th>
<th>Design Effect of Row Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1543</td>
<td>90.3833</td>
<td>0.9724</td>
<td>88.3317 - 92.4350</td>
<td>1.8474</td>
</tr>
<tr>
<td>2</td>
<td>154</td>
<td></td>
<td>9.5266</td>
<td>0.9553</td>
<td>7.5110 - 11.5422</td>
<td>1.7980</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.0901</td>
<td>0.0658</td>
<td>0.0000</td>
<td>0.2289 - 0.8163</td>
<td>0.8163</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1699</td>
<td>100.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2438</td>
<td>47.2223</td>
<td>1.5521</td>
<td>43.9477 - 50.4970</td>
<td>5.1760</td>
</tr>
<tr>
<td>2</td>
<td>2284</td>
<td></td>
<td>42.7985</td>
<td>1.2035</td>
<td>40.2593 - 45.3378</td>
<td>3.1684</td>
</tr>
<tr>
<td>3</td>
<td>489</td>
<td></td>
<td>7.9778</td>
<td>0.5815</td>
<td>6.7509 - 9.2047</td>
<td>2.4669</td>
</tr>
<tr>
<td>4</td>
<td>145</td>
<td></td>
<td>2.0013</td>
<td>0.4385</td>
<td>1.0762 - 2.9264</td>
<td>5.2493</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5356</td>
<td>100.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>3981</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2438</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>491</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7055</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequency Missing = 2283
Example 6.4: A Goodness of Fit Test for Proportions of Russians age 15+ by Marital Status.

The SURVEYFREQ Procedure

<table>
<thead>
<tr>
<th>Data Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Strata</td>
</tr>
<tr>
<td>Number of Clusters</td>
</tr>
<tr>
<td>Number of Observations</td>
</tr>
<tr>
<td>Sum of Weights</td>
</tr>
</tbody>
</table>

<p>| Marital Status: 1=Currently Married 2=Previously Married 3=Never Married |
|------------------|-----------------|</p>
<table>
<thead>
<tr>
<th>marcat</th>
<th>Frequency</th>
<th>Weighted Frequency</th>
<th>Std Err of Wgt Freq</th>
<th>Percent</th>
<th>Test Percent</th>
<th>Std Err of Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1066</td>
<td>1236</td>
<td>61.07696</td>
<td>50.3860</td>
<td>50.00</td>
<td>1.2878</td>
</tr>
<tr>
<td>2</td>
<td>791</td>
<td>564.34716</td>
<td>36.12788</td>
<td>23.0066</td>
<td>25.00</td>
<td>1.1536</td>
</tr>
<tr>
<td>3</td>
<td>587</td>
<td>652.67253</td>
<td>37.60300</td>
<td>26.6074</td>
<td>25.00</td>
<td>1.3401</td>
</tr>
<tr>
<td>Total</td>
<td>2444</td>
<td>2453</td>
<td>94.17226</td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequency Missing = 40

Rao-Scott Likelihood Ratio Test

Likelihood Ratio Chi-Square	6.5381
Design Correction	1.9332
First-Order Chi-Square	3.3821
Second-Order Chi-Square	3.2472
DF	1.92
Pr > ChiSq	0.1856
F Value	1.6910
Num DF	1.92
Den DF	337.97
Pr > F	0.1871

Sample Size = 2444
Example 6.5: Pie Charts and Vertical Bar Charts of the Estimated Proportions of Russians age 15+ by Marital Status.

The FREQ Procedure

| Marital Status: 1=Currently Married 2=Previously Married 3=Never Married |
|---|---|---|---|
| marcat | Frequency | Percent | Cumulative Frequency | Cumulative Percent |
| 1 | 1235.957 | 50.39 | 1235.957 | 50.39 |
| 2 | 564.3472 | 23.01 | 1800.304 | 73.39 |
| 3 | 652.6725 | 26.61 | 2452.977 | 100.00 |
| Frequency Missing | 31.023132863 | | | |

Distribution of marcat

Marital Status: 1=Currently Married 2=Previously Married 3=Never Married
Example 6.6: Estimation of Total and Row Proportions for the Crosstabulation of Gender and Lifetime Major Depression Status (Source: NCS-R).

The SURVEYFREQ Procedure

Data Summary

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Strata</td>
<td>42</td>
</tr>
<tr>
<td>Number of Clusters</td>
<td>84</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>9282</td>
</tr>
<tr>
<td>Sum of Weights</td>
<td>9282.00015</td>
</tr>
</tbody>
</table>

Table of SEX by mde

<table>
<thead>
<tr>
<th>SEX</th>
<th>mde</th>
<th>Frequency</th>
<th>Weighted Frequency</th>
<th>Std Err of Wgt Freq</th>
<th>Percent</th>
<th>Std Err of Percent</th>
<th>Design Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3522</td>
<td>3774</td>
<td>169.19111</td>
<td>40.6644</td>
<td>0.6980</td>
<td>1.8741</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>617</td>
<td>670.23208</td>
<td>57.70029</td>
<td>7.2208</td>
<td>0.3438</td>
<td>1.6372</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>4139</td>
<td>4445</td>
<td>215.70025</td>
<td>47.8852</td>
<td>0.5315</td>
<td>1.0508</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3931</td>
<td>3728</td>
<td>195.07524</td>
<td>40.1644</td>
<td>0.5361</td>
<td>1.1097</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1212</td>
<td>1109</td>
<td>61.50166</td>
<td>11.9504</td>
<td>0.3028</td>
<td>0.8086</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5143</td>
<td>4837</td>
<td>248.29286</td>
<td>52.1148</td>
<td>0.5315</td>
<td>1.0508</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>7453</td>
<td>7503</td>
<td>349.57814</td>
<td>80.8289</td>
<td>0.4877</td>
<td>1.4245</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1829</td>
<td>1779</td>
<td>113.95611</td>
<td>19.1711</td>
<td>0.4877</td>
<td>1.4245</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>9282</td>
<td>9282</td>
<td>453.54554</td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rao-Scott Chi-Square Test

<table>
<thead>
<tr>
<th>Test</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>92.1499</td>
</tr>
<tr>
<td>Design Correction</td>
<td>1.3725</td>
</tr>
<tr>
<td>First-Order Chi-Square</td>
<td>67.1387</td>
</tr>
<tr>
<td>Second-Order Chi-Square</td>
<td>67.1387</td>
</tr>
<tr>
<td>DF</td>
<td>1</td>
</tr>
<tr>
<td>Pr > ChiSq</td>
<td><.0001</td>
</tr>
<tr>
<td>F Value</td>
<td>67.1387</td>
</tr>
<tr>
<td>Num DF</td>
<td>1</td>
</tr>
<tr>
<td>Den DF</td>
<td>42</td>
</tr>
<tr>
<td>Pr > F</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Sample Size = 9282
Example 6.6: Estimation of Total and Row Proportions for the Crosstabulation of Gender and Lifetime Major Depression Status (Source: NCS-R).

The SURVEYFREQ Procedure

Data Summary

<table>
<thead>
<tr>
<th>Data Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Strata</td>
<td>42</td>
</tr>
<tr>
<td>Number of Clusters</td>
<td>84</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>9282</td>
</tr>
<tr>
<td>Sum of Weights</td>
<td>9282.00015</td>
</tr>
</tbody>
</table>

Table of SEX by mde

<table>
<thead>
<tr>
<th>SEX</th>
<th>mde</th>
<th>Frequency</th>
<th>Weighted Frequency</th>
<th>Std Err of Wgt Freq</th>
<th>Percent</th>
<th>Std Err of Percent</th>
<th>Row Percent</th>
<th>Std Err of Row Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3522</td>
<td>3774</td>
<td>169.19112</td>
<td>40.6644</td>
<td>0.6980</td>
<td>84.9207</td>
<td>0.7748</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>617</td>
<td>670.23208</td>
<td>57.70029</td>
<td>7.2208</td>
<td>0.3438</td>
<td>15.0793</td>
<td>0.7748</td>
</tr>
<tr>
<td>Total</td>
<td>4139</td>
<td>4445</td>
<td>215.70025</td>
<td>47.8852</td>
<td>0.5315</td>
<td>100.000</td>
<td>0.5315</td>
<td>100.000</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3931</td>
<td>3728</td>
<td>195.07524</td>
<td>40.1644</td>
<td>0.5361</td>
<td>77.0692</td>
<td>0.5647</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1212</td>
<td>1109</td>
<td>61.50166</td>
<td>11.9504</td>
<td>0.3028</td>
<td>22.9308</td>
<td>0.5647</td>
</tr>
<tr>
<td>Total</td>
<td>5143</td>
<td>4837</td>
<td>248.29286</td>
<td>52.1148</td>
<td>0.5315</td>
<td>100.000</td>
<td>0.5315</td>
<td>100.000</td>
</tr>
<tr>
<td>Total</td>
<td>9282</td>
<td>9282</td>
<td>453.54554</td>
<td>100.000</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table of SEX by mde

<table>
<thead>
<tr>
<th>SEX</th>
<th>mde</th>
<th>95% Confidence Limits for Row Percent</th>
<th>Design Effect of Row Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>83.3571 - 86.4842</td>
<td>1.9398</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>13.5158 - 16.6429</td>
<td>1.9398</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>75.9295 - 78.2088</td>
<td>0.9279</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>21.7912 - 24.0705</td>
<td>0.9279</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rao-Scott Chi-Square Test

<table>
<thead>
<tr>
<th>Test</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>92.1499</td>
</tr>
<tr>
<td>Design Correction</td>
<td>1.3725</td>
</tr>
<tr>
<td>First-Order Chi-Square</td>
<td>67.1387</td>
</tr>
<tr>
<td>Second-Order Chi-Square</td>
<td>67.1387</td>
</tr>
<tr>
<td>DF</td>
<td>1</td>
</tr>
<tr>
<td>Pr > ChiSq</td>
<td><.0001</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>Rao-Scott Chi-Square Test</td>
<td></td>
</tr>
<tr>
<td>F Value</td>
<td>67.1387</td>
</tr>
<tr>
<td>Num DF</td>
<td>1</td>
</tr>
<tr>
<td>Den DF</td>
<td>42</td>
</tr>
<tr>
<td>Pr > F</td>
<td><.0001</td>
</tr>
<tr>
<td>Sample Size</td>
<td>9282</td>
</tr>
</tbody>
</table>
Example 6.7: Comparing the Proportions of U.S. Adult Men and Women with Lifetime Major Depression.

The SURVEYREG Procedure

Regression Analysis for Dependent Variable mde

<table>
<thead>
<tr>
<th>Data Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations</td>
</tr>
<tr>
<td>Sum of Weights</td>
</tr>
<tr>
<td>Weighted Mean of mde</td>
</tr>
<tr>
<td>Weighted Sum of mde</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Strata</td>
</tr>
<tr>
<td>Number of Clusters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fit Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-Square</td>
</tr>
<tr>
<td>Root MSE</td>
</tr>
<tr>
<td>Denominator DF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class Level Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS Variable</td>
</tr>
<tr>
<td>Label</td>
</tr>
<tr>
<td>Levels</td>
</tr>
<tr>
<td>Values</td>
</tr>
<tr>
<td>SEX</td>
</tr>
<tr>
<td>Sex 1-Male</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>SEX 1</td>
</tr>
<tr>
<td>-0.0785150</td>
</tr>
<tr>
<td>0.009565235</td>
</tr>
<tr>
<td>8.22</td>
</tr>
<tr>
<td><.0001</td>
</tr>
<tr>
<td>SEX 2</td>
</tr>
<tr>
<td>0.00000000</td>
</tr>
<tr>
<td>0.00000000</td>
</tr>
<tr>
<td>.</td>
</tr>
</tbody>
</table>

The denominator degrees of freedom for the F tests is 42.

The degrees of freedom for the t tests is 42.
Matrix X'WX is singular and a generalized inverse was used to solve the normal equations. Estimates are not unique.
SEX Least Squares Means

| Sex | Estimate | Standard Error | DF | t Value | Pr > |t| |
|---------|----------|----------------|-----|---------|-------|---|
| 1 | 0.1508 | 0.007748 | 42 | 19.46 | <.0001|
| 2 | 0.2293 | 0.005648 | 42 | 40.60 | <.0001|

Differences of SEX Least Squares Means

| Sex 1-Male | Sex 1-Male | Estimate | Standard Error | DF | t Value | Pr > |t| |
|-----------|-----------|----------|----------------|-----|---------|-------|---|
| 1 | 2 | -0.07851 | 0.009552 | 42 | -8.22 | <.0001|
Example 6.8: Testing the Independence of MDE and Gender in U.S. Adults Using the NCS-R data.

The SURVEYFREQ Procedure

Data Summary

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Strata</td>
<td>42</td>
</tr>
<tr>
<td>Number of Clusters</td>
<td>84</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>9282</td>
</tr>
<tr>
<td>Sum of Weights</td>
<td>9282.00015</td>
</tr>
</tbody>
</table>

Table of SEX by mde

<table>
<thead>
<tr>
<th>SEX</th>
<th>mde</th>
<th>Frequency</th>
<th>Weighted Frequency</th>
<th>Std Err of Wgt Freq</th>
<th>Percent</th>
<th>Std Err of Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3522</td>
<td>3774</td>
<td>169.19112</td>
<td>40.6644</td>
<td>0.6980</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>617</td>
<td>670.23208</td>
<td>57.70029</td>
<td>7.2208</td>
<td>0.3438</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>4139</td>
<td>4445</td>
<td>215.70025</td>
<td>47.8852</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3931</td>
<td>3728</td>
<td>195.07524</td>
<td>40.1644</td>
<td>0.5361</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1212</td>
<td>1109</td>
<td>61.50166</td>
<td>11.9504</td>
<td>0.3028</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>5143</td>
<td>4837</td>
<td>248.29286</td>
<td>52.1148</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>7453</td>
<td>7503</td>
<td>349.57814</td>
<td>80.8289</td>
<td>0.4877</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1829</td>
<td>1779</td>
<td>113.95611</td>
<td>19.1711</td>
<td>0.4877</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>9282</td>
<td>9282</td>
<td>453.54554</td>
<td>100.000</td>
</tr>
</tbody>
</table>

Rao-Scott Chi-Square Test

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>92.1499</td>
</tr>
<tr>
<td>Design Correction</td>
<td>1.3725</td>
</tr>
<tr>
<td>First-Order Chi-Square</td>
<td>67.1387</td>
</tr>
<tr>
<td>Second-Order Chi-Square</td>
<td>67.1387</td>
</tr>
<tr>
<td>DF</td>
<td>1</td>
</tr>
<tr>
<td>Pr > ChiSq</td>
<td><.0001</td>
</tr>
<tr>
<td>F Value</td>
<td>67.1387</td>
</tr>
<tr>
<td>Num DF</td>
<td>1</td>
</tr>
<tr>
<td>Den DF</td>
<td>42</td>
</tr>
<tr>
<td>Pr > F</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Sample Size = 9282
Example 6.9: Testing the Independence of Alcohol Dependence and Education Level in Young Adults (Ages 18-28) using the NCS-R data.

The SURVEYFREQ Procedure

<table>
<thead>
<tr>
<th>Data Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Strata</td>
</tr>
<tr>
<td>Number of Clusters</td>
</tr>
<tr>
<td>Number of Observations</td>
</tr>
<tr>
<td>Number of Observations Used</td>
</tr>
<tr>
<td>Number of Obs with Nonpositive Weights</td>
</tr>
<tr>
<td>Sum of Weights</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table of ED4CAT by ald</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlling for age18_28=0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ED4CAT</th>
<th>ald</th>
<th>Frequency</th>
<th>Weighted Frequency</th>
<th>Std Err of Wgt Freq</th>
<th>Row Percent</th>
<th>Std Err of Row Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>570</td>
<td>689.26106</td>
<td>48.65927</td>
<td>94.0454</td>
<td>0.7976</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>71</td>
<td>43.64177</td>
<td>5.63734</td>
<td>5.9546</td>
<td>0.7976</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>641</td>
<td>732.90283</td>
<td>49.40849</td>
<td>100.000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1223</td>
<td>1362</td>
<td>89.50257</td>
<td>94.1603</td>
<td>0.6250</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>107</td>
<td>84.49599</td>
<td>11.21382</td>
<td>5.8397</td>
<td>0.6250</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1330</td>
<td>1447</td>
<td>95.77820</td>
<td>100.000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1145</td>
<td>1064</td>
<td>50.18931</td>
<td>93.8975</td>
<td>0.5242</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>106</td>
<td>69.16919</td>
<td>7.39750</td>
<td>6.1025</td>
<td>0.5242</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1251</td>
<td>1133</td>
<td>54.43718</td>
<td>100.000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1138</td>
<td>1077</td>
<td>70.55346</td>
<td>96.8458</td>
<td>0.4829</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>57</td>
<td>35.07967</td>
<td>4.91665</td>
<td>3.1542</td>
<td>0.4829</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1195</td>
<td>1112</td>
<td>70.44264</td>
<td>100.000</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>4076</td>
<td>4193</td>
<td>184.54693</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>341</td>
<td>232.38662</td>
<td>17.38587</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>4417</td>
<td>4425</td>
<td>194.71240</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rao-Scott Chi-Square Test

Pearson Chi-Square	13.1918
Design Correction	0.8128
First-Order Chi-Square	16.2305
Second-Order Chi-Square	12.1218
DF	2.24
Pr > ChiSq	0.0031
F Value	5.4102
Num DF	2.24
Rao-Scott Chi-Square Test

<table>
<thead>
<tr>
<th>Den DF</th>
<th>94.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr > F</td>
<td>0.0044</td>
</tr>
</tbody>
</table>

Sample Size = 5692

Table of ED4CAT by ald
Controlling for age18_28=1

<table>
<thead>
<tr>
<th>ED4CAT</th>
<th>ald</th>
<th>Frequency</th>
<th>Weighted Frequency</th>
<th>Std Err of Wgt Freq</th>
<th>Row Percent</th>
<th>Std Err of Row Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>186</td>
<td>200.86597</td>
<td>21.26023</td>
<td>90.8714</td>
<td>2.9380</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>22</td>
<td>20.17818</td>
<td>6.69593</td>
<td>9.1286</td>
<td>2.9380</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>208</td>
<td>221.04416</td>
<td>21.91184</td>
<td>100.000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>356</td>
<td>384.76486</td>
<td>26.45399</td>
<td>95.1442</td>
<td>1.3460</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>26</td>
<td>19.63715</td>
<td>5.96079</td>
<td>9.1286</td>
<td>1.3460</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>382</td>
<td>404.40202</td>
<td>28.73956</td>
<td>100.000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>424</td>
<td>413.14106</td>
<td>46.87778</td>
<td>95.1042</td>
<td>1.3460</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>34</td>
<td>21.26768</td>
<td>4.69579</td>
<td>9.1286</td>
<td>1.3460</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>458</td>
<td>434.40873</td>
<td>48.50085</td>
<td>100.000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>207</td>
<td>192.43145</td>
<td>30.56315</td>
<td>93.0962</td>
<td>1.3640</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>20</td>
<td>14.27020</td>
<td>3.30762</td>
<td>6.9038</td>
<td>1.3640</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>227</td>
<td>206.70164</td>
<td>32.22052</td>
<td>100.000</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1275</td>
<td>1191</td>
<td>87.85136</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>102</td>
<td>75.35321</td>
<td>13.36129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1267</td>
<td>1191</td>
<td>87.85136</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rao-Scott Chi-Square Test

<table>
<thead>
<tr>
<th>Pearson Chi-Square</th>
<th>6.0957</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Correction</td>
<td>1.4828</td>
</tr>
<tr>
<td>First-Order Chi-Square</td>
<td>4.1109</td>
</tr>
<tr>
<td>Second-Order Chi-Square</td>
<td>3.1310</td>
</tr>
<tr>
<td>DF</td>
<td>2.28</td>
</tr>
<tr>
<td>Pr > ChiSq</td>
<td>0.2536</td>
</tr>
<tr>
<td>F Value</td>
<td>1.3703</td>
</tr>
<tr>
<td>Num DF</td>
<td>2.28</td>
</tr>
<tr>
<td>Den DF</td>
<td>95.97</td>
</tr>
<tr>
<td>Pr > F</td>
<td>0.2591</td>
</tr>
</tbody>
</table>

Sample Size = 5692
Example 6.10: Simple Logistic Regression to Estimate the NCS-R Male/Female Odds Ratio for Lifetime Major Depressive Episode.

The SURVEYLOGISTIC Procedure

<table>
<thead>
<tr>
<th>Model Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Set</td>
</tr>
<tr>
<td>Response Variable</td>
</tr>
<tr>
<td>Number of Response Levels</td>
</tr>
<tr>
<td>Stratum Variable</td>
</tr>
<tr>
<td>Number of Strata</td>
</tr>
<tr>
<td>Cluster Variable</td>
</tr>
<tr>
<td>Number of Clusters</td>
</tr>
<tr>
<td>Weight Variable</td>
</tr>
<tr>
<td>Model</td>
</tr>
<tr>
<td>Optimization Technique</td>
</tr>
<tr>
<td>Variance Adjustment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variance Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
</tr>
<tr>
<td>Variance Adjustment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordered Value</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Probability modeled is mde=1.

<table>
<thead>
<tr>
<th>Model Convergence Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convergence criterion (GCONV=1E-8) satisfied.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Fit Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>AIC</td>
</tr>
<tr>
<td>SC</td>
</tr>
<tr>
<td>(\text{-2 Log L})</td>
</tr>
</tbody>
</table>
Testing Global Null Hypothesis: BETA=0

<table>
<thead>
<tr>
<th>Test</th>
<th>F Value</th>
<th>Num DF</th>
<th>Den DF</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood Ratio</td>
<td>76.79</td>
<td>1</td>
<td>42</td>
<td><.0001</td>
</tr>
<tr>
<td>Score</td>
<td>89.70</td>
<td>1</td>
<td>42</td>
<td><.0001</td>
</tr>
<tr>
<td>Wald</td>
<td>57.26</td>
<td>1</td>
<td>42</td>
<td><.0001</td>
</tr>
</tbody>
</table>

NOTE: First-order Rao-Scott design correction 1.2124 applied to the likelihood ratio test.

Analysis of Maximum Likelihood Estimates

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|-----------|----------|----------------|---------|------|---|
| Intercept | -1.2122 | 0.0320 | -37.93 | <.0001 |
| sexm | -0.5160 | 0.0682 | -7.57 | <.0001 |

NOTE: The degrees of freedom for the t tests is 42.

Odds Ratio Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Point Estimate</th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>sexm</td>
<td>0.597</td>
<td>0.520 0.685</td>
</tr>
</tbody>
</table>

NOTE: The degrees of freedom in computing the confidence limits is 42.

Association of Predicted Probabilities and Observed Responses

Percent Concordant	31.3	Somers' D	0.135
Percent Discordant	17.8	Gamma	0.275
Percent Tied	50.9	Tau-a	0.043
Pairs	13631537	c	0.568