Overview of Findings:
Results from a UM Pilot Study on the Behavioral Aspects of Energy Conservation in Buildings

Robert W. Marans - Project Director
Lesli Scott - Survey Director

Survey Research Center
Institute for Social Research
University of Michigan

Summer 2007
Overview of Findings

This overview of findings from the ISR pilot study contains responses to questions asked in web surveys administered in five UM buildings. One survey was administered to all faculty and staff in four buildings in fall 2006 and in the Fleming building in March 2007. The initial four buildings were Chemistry, ISR, Rackham, and Space Research. A second fall 2006 survey was administered to a sample of students taking courses in the Chemistry and Space Research buildings. The summary covering faculty and staff within each building is based on the percentage distributions shown in Tables 1B-28B (Faculty/Staff Responses, by Building). When there are significant differences between faculty responses and staff responses, these differences are noted and reflect data presented in Tables 1FS-28FS (Faculty/Staff Responses, by UM Status). Summaries covering student responses are based on the data from Tables 1S-21S (Student Responses, by Year in School). In some instances, additional findings from focus group sessions with faculty, staff and students conducted prior to the survey are included in this overview. In other instances, findings from behavioral observations are also presented. Observations and environmental measures were made in a sample of spaces in the initial four buildings.

Evaluation of Working Conditions

Although several academic units are housed in the Chemistry and Space Research Buildings, the survey was administered to only faculty and staff in the Chemistry Department and in the Department of Atmospheric, Oceanic, and Space Science (A OSS), respectively. Similarly, the Rackham Building contains administrative units other than the Rackham School of Graduate Studies. The survey was administered to only the latter. Finally, the Institute for Social Research is housed in its main building on Thompson Street and in the Perry Building. The survey was administered to only the research faculty and the staff in the Thompson building.

Behavioral observations and environmental measures were made during the summer 2006 and in early fall prior to launching the web surveys. Observations were made during the workday in offices and meeting spaces in the initial four pilot buildings. They were also made in laboratories with the Chemistry and Space Research buildings.

These numbers refer to their corresponding tables. Table numbers ending in B show differences in responses within each building. Table numbers ending in FS show differences in responses between faculty and staff. Differences in responses for students who differ by year in school are shown in tables ending in S.

1 Although several academic units are housed in the Chemistry and Space Research Buildings, the survey was administered to only faculty and staff in the Chemistry Department and in the Department of Atmospheric, Oceanic, and Space Science (A OSS), respectively. Similarly, the Rackham Building contains administrative units other than the Rackham School of Graduate Studies. The survey was administered to only the latter. Finally, the Institute for Social Research is housed in its main building on Thompson Street and in the Perry Building. The survey was administered to only the research faculty and the staff in the Thompson building.

2 Behavioral observations and environmental measures were made during the summer 2006 and in early fall prior to launching the web surveys. Observations were made during the workday in offices and meeting spaces in the initial four pilot buildings. They were also made in laboratories with the Chemistry and Space Research buildings.

3 These numbers refer to their corresponding tables. Table numbers ending in B show differences in responses within each building. Table numbers ending in FS show differences in responses between faculty and staff. Differences in responses for students who differ by year in school are shown in tables ending in S.
1FS. Staff members were twice as likely as faculty to be dissatisfied with conditions during the winter months (44% versus 24%). They were also more uncomfortable during the summer months; 51% expressed dissatisfaction compared to 33% of the faculty.

In the 105 occupied work stations observed (during summer and early fall), 43% of the occupants were wearing sweaters, jackets, or another form of heavy clothing. ISR occupants were most likely to be wearing heavy clothing.

2B. Among faculty and staff participants who had access to a thermostat, nearly half (47%) were dissatisfied with their ability to control it. Rackham participants were most likely to express dissatisfaction and most of them were staff.

2FS. Overall, half of all staff members expressed dissatisfaction with their ability to control the thermostat compared to a third of the faculty.

One quarter of the faculty and staff in the 5 buildings were dissatisfied with the ability to control lighting at their workstation. For participants who had access to a window, half indicated they were dissatisfied with their ability to open and close windows. Staff and faculty in Rackham and in ISR were most likely to express dissatisfaction with their window situation (62% and 56%, respectively).

Staff members were somewhat more likely than faculty to say they were dissatisfied with their control over lighting.

Fleming occupants were not asked about windows. In the other four pilot buildings, staff members more likely than their faculty colleagues to be dissatisfied with their ability to open and close windows.

During the focus group sessions, lack of control over temperature and lighting in the work place was often noted by faculty and staff as reasons for their not engaging in appropriate energy-reducing behaviors at work.

Impacts of Uncomfortable Working Conditions

3B Uncomfortable working conditions have negative consequences for UM employees. Nearly one in 5 (17%) said they had missed work during the past year because it was either too hot in the summer or too cold in the winter. Participants in ISR were most likely to report absenteeism (22%) and Fleming building occupants were least likely to be absent.

About 4 in 10 said their job performance was “sometimes” affected by uncomfortable working conditions. Six in 10 occupants from the Rackham building said their job performance was “always” or “sometimes” adversely affected.
3FS. Although there was little difference between faculty and staff in reports of absenteeism, staff members were more likely than faculty to say their job performance was affected by uncomfortable building conditions (45% versus 33%).

During focus group sessions, uncomfortable working conditions were mentioned as an impediment to a successful energy-reduction campaign.

Energy-Consuming Equipment in the Work Place

4B. Most offices and work stations contain an abundance of energy-consuming equipment. In addition to having computers and printers, one in 5 occupants said they had a refrigerator at their work station and nearly one in 5 (18%) had a space heater, an electric fan (18%) and a radio (17%). Refrigerators are most prevalent in the Chemistry building and space heaters are most likely to be found at Rackham work stations (27%). More than a third (36%) of Rackham occupants and a quarter of ISR occupants said they had an electric fan. In contrast, only 6% of the Fleming occupants had an electric fan.

4FS. Within the 5 buildings, staff members were eight times more likely than faculty to report having an electric fan (27% versus 4%) and three times more likely than faculty to say they have a space heater (23% versus 8%).

The percentages of energy-consuming equipment observed during the behavioral observations in sampled offices and work stations were comparable to the percentages reported in the questionnaire. Additionally, chargers for cell phones, iPods, etc., were noted at nearly half (48%) of the work stations during the observations.

5B Furniture-integrating lighting or task lamps provide supplemental light to half of the occupants in the pilot buildings. About 6 in 10 (62%) of the Fleming occupants had at least one type of supplemental lighting whereas one in 5 Rackham occupants said they had supplemental lights.

Behavior with Lighting

6B. More than 4 in 10 faculty and staff members (46%) do not turn off overhead lights when leaving their office or work station during the day. The same proportion having supplemental lighting said they never turn off their task lights when leaving the office during the day; nearly a third (31%) said they “always” turn off their task lights. However, most participants (94%) said they turn off their lights when they are the last person to leave the office at the end of the day.

6FS. Staff members were more likely than faculty to say they never turn off the overhead lights and never turn off their task lighting when leaving the room during the day. Staff and faculty were equally diligent in turning off lights when leaving work at the end of the day and when they were the last to leave a meeting room.
Fleming staff members with desk lamps were much more likely than faculty to say they “always” work with them on and without overhead lights on.

Among the Fleming occupants, one in 5 said they “sometimes” or “always” work with just their supplemental lighting and no overhead lights on.

Of the 94 unoccupied offices and work stations observed that had supplemental lighting, the furniture-integrated lighting or task lamps were on in 17% of them.

Among faculty and staff using classrooms or conference rooms and who are the last to leave the room, 70% said they “always” turn off lights when leaving and 4% “never” turn off the lights.

4S. Among students who said they are the last to leave a classroom, a third “always” turn off the lights and one-fourth said they “never” turn off the lights. Graduate students are twice as likely as others to say they “always” turn off the lights when they are the last to leave a classroom (58% versus 28%).

Behavior with Computers

7B. More than 4 in 10 faculty and staff members (44%) said they “always” turn off their main computer when leaving the office at the end of the day; a third (36%) said they “never” turn off their computer. Most likely to keep their computers on at all times are the occupants of the Space Research building (77%) and of ISR (37%). Of the Rackham occupants, 9 in 10 “always” turn off the computer at the end of the day.

During the workday, two-thirds of the faculty and staff said they never turn off the computer when leaving the room whereas 8% said the “always” turn it off.

Behavioral observations in the initial four pilot buildings revealed that computers indeed remained on when no one was at his/her work station. Of the 191 unoccupied work stations observed, half of them had their computer on.

A quarter of the building occupants said they regularly access their office computers while at home or traveling. Most likely to remote access are faculty and staff in Space Research (59% do so “regularly” or “occasionally”) and those at ISR (46% do so “regularly” or “occasionally”).

7FS. Overall, faculty members are much more likely to regularly access their office computers while away from the university than staff (35% versus 20%).

Uses of Windows

8B. Within the pilot buildings excluding Fleming, about 20% of the faculty and staff have operable windows at or near their work station. During the winter months, one in ten said
they “sometimes” open the window during the cool or cold weather months, about 3 in 10 said they “sometimes” open the windows during the warm or hot weather months. Rackham and ISR employees were most likely to open windows throughout the year.

Use of Thermostats

9B. For building occupants who control their own thermostat, somewhat less than half (45%) “always” or “sometimes” make adjustments during the winter months or during the warm or hot weather months. When the thermostat controls the temperature at the individual’s work station and the work stations of others, a third said they “always” or “sometimes” make adjustments. Staff and faculty in Rackham were most likely to make temperature adjustments.

9FS. Temperature adjustments during the winter were more likely to be made by staff members than by faculty (50% versus 38%). Staff members made more adjustments during the summer months as well.

Some building occupants used other means of adjusting temperatures at their work stations. Of the 40 space heaters recorded during the summer and fall observations, nearly one in 5 was operating.

Changes in Energy Use at Home and at Work

10B. Building occupants were more likely to reduce their use of energy at home than at work. Whereas half said they decreased home energy use, less than a third (31%) said they decreased energy use at work. Rackham employees were nearly three times as likely to reduce energy use at work as employees in other buildings (73% versus 27%).

Focus group participants were much more likely to mention energy-reducing initiatives at home than at work.

Changes in Behavior with Lighting

11B. About one in 5 building occupants said they were more likely to turn off lights when leaving their office now compared to a year ago. Rackham occupants were most likely to change their lighting behavior (34%) and those in Space Research were least likely (13%).

Changes in Behavior with Computers

12B. Most building occupants (83%) said that since last year, they haven’t changed their computer behavior and 13% said they are now more likely to turn off their computer at the end of the day. In Rackham, 42% of the occupants said they are now more likely to turn off their computer.
Self-Ratings of Energy Reduction Efforts

13B. Study participants believe they do a better job of reducing utility costs at home than at work. Whereas 6 in 10 gave themselves grades for their home efforts, less than half (46%) gave “good” or “very good” grades for their energy reduction efforts at work. Four in 10 gave themselves a “fair” grade and 1 in 10 gave “poor” or “very poor” grades. Most Rackham participants felt they were doing well at energy reduction at work; about three-quarters of them rated their efforts as “good” or “very good”.

Ratings of Others’ Energy Reduction Efforts

14B. More than half the faculty members in the Chemistry and AOSS Departments were unable to rate other faculty, the staff, and students in their energy reduction efforts. Of the faculty members who were able to rate staff members in their department, about 4 in 10 said their efforts at energy reduction were “good” or “very good”.

A third of the AOSS staff (32%) rated their co-workers as “good” or “very good” and another third (37%) said they did not know about their co-workers. One-fourth of the Chemistry Department staff did not know about their co-workers efforts to reduce utility costs at work.

14FS. Of faculty and staff in Chemistry and in Space Research who rated student efforts to reduce energy, faculty tended to give them higher ratings. In fact the “poor” ratings of staff were about three times greater than the “poor” ratings of faculty (28% versus 10%)

Concerns about Rising Energy Costs at Home and at Work

15B. Half of all faculty and staff said they were “very concerned” about their rising utility bills at home whereas just one-quarter (27%) were “very concerned” about the rising costs of electricity and heating in UM buildings. Overall, one in 5 said they were “not very concerned” or “not at all concerned” about utility costs in UM buildings. Least concerned were occupants of Space Research (30%).

15FS. While there was little difference between faculty and staff in their concerns about rising utility costs at UM, staff members were much more concerned than faculty about the rising utility costs at home. Nearly 6 in 10 staff said they were “very concerned’ compared to 34% of the faculty.

10S. One in 5 students said they were “very concerned” about the rising costs of electricity and heating at their current residence and 10% said they were “very concerned” about the rising costs of electricity and heating in UM buildings. Least likely to be concerned about rising energy costs at their residence are first year students; only one in 10 said they were “very concerned”. Graduate students were more likely than others to be “very concerned” about rising energy costs in UM buildings (15% versus 9%).
Views about Others’ Concerns about Rising Energy Costs

16B. Most faculty and staff in Chemistry and Space Research (80%) did not think their students were very concerned about the rising costs of electricity and heating in UM buildings. At the same time, almost half of the faculty (46%) indicated that other departmental faculty members were not concerned.

Faculty and staff in ISR, in Fleming, and particularly in Rackham had somewhat more favorable than unfavorable views about the concerns of their co-workers. Overall, about 6 in 10 said their co-workers were concerned about rising utility costs in UM buildings. In Rackham, 7 in 10 were sanguine about their co-workers.

Concerns about Global Warming

17B. Most faculty and staff were concerned about global warming and more than half were “very concerned”. In response to the question, “How concerned are you personally about global warming, 9 in 10 said they were concerned. When compared to other faculty and staff, those in the Chemistry building were twice as likely to be unconcerned about global warming (17% versus 8%).

17FS. Faculty were somewhat more concerned about global warming than staff (92% versus 87%)

12S. Students also expressed concern about global warming but to a somewhat lesser degree than faculty and staff. About a third (31%) said they were “very concerned” and another 51% were “somewhat concerned”. There is a significant relationship between percentage of students who said they were “very concerned” and their year in school. Just 25% of the first year students gave this response compared to 30% of the sophomores and juniors, 34% of the seniors, and 42% of the graduate students.

Views about Global Warming

18B. Given the level of concern, it is not surprising that a high proportion of participants from each building said that global warming is “probably happening” (90%) and is caused by “human activity” (80%). Most likely to have said that human activity is the cause of global warming are faculty and staff from Space Research. Overall, 13% said they don’t know what causes global warming. Similarly, 14% of all faculty and staff didn’t know nor had no opinion about whether or not it was possible to affect global warming. More than three-quarters thought that it was possible to affect global warming and one in 10 said it was impossible. Fleming participants were most likely to think it was possible.

Whereas the majority of faculty and staff (75%) said it was possible to affect global warming, a higher proportion (90%) said it was possible to reduce greenhouse gasses; 8% said they “don’t know” whether it is possible or not possible to affect global warming.
18FS. Compared to the staff, a larger proportion of faculty said they didn’t know what caused global warming, were not sure if it were possible to affect it, and were uncertain about the possibilities of reducing greenhouse gases.

13S. The proportions of students who said that global warming is “probably happening” and is caused by “human activity” are identical to those reported for faculty and staff. However graduate students, most of whom are in the Space Research building, were less likely than others to believe that global warming is caused by human activity and more likely to say that it is caused by “normal cycles in the earth’s environment”. First year students on the other hand were less likely than others to believe that it is “possible to affect global warming” and more likely to give “don’t know” responses to the question.

Awareness of UM Efforts to Conserve Energy

19B. Three in 4 faculty and staff members said they were aware of UM’s efforts to reduce utility or energy costs in buildings. About a quarter said they were “very aware” and the others were “somewhat aware”. Most likely to be aware of UM efforts were Rackham employees; two-thirds were “very aware”.

19FS. Staff personnel were more likely than faculty to be “very aware” of UM’s energy reduction efforts (30% versus 19%).

14S. Students in Chemistry and Space Research were much less likely than faculty and staff to know what UM was doing about energy reduction. Somewhat more than a third (36%) said they were aware of UM’s efforts to reduce utility costs in buildings. Graduate students were twice as likely to be aware of UM’s efforts than undergraduate students (63% versus 31%).

A related indicator of UM’s efforts at energy reduction is whether or not faculty and staff have seen the energy-related posters in buildings. Whereas 80% of Rackham and Fleming occupants were aware of the posters, only two-thirds from ISR and from Space Research and half from Chemistry said they were aware of the building posters.

Staff personnel were also more likely than faculty to be aware of the energy posters put up in buildings (73% versus 56%).

14S. Fewer students than faculty and staff were aware of the university’s energy posters. Just under half from Chemistry and Space Research said they were aware of the posters in their respective buildings.

Awareness of Guidelines on Computer Use and Lighting Behavior

20 B. Policies regarding shutting down computers varied greatly among the pilot buildings. Overall, nearly 4 in 10 building occupants (38%) said their department or unit had a policy to shut down their computers when they left work in the evening. Virtually
all occupants in Rackham said this was the unit’s policy compared to 43% from Chemistry, a quarter from ISR, and two-thirds from Fleming who acknowledged this policy. In Space Research, half (54%) of the occupants said departmental policy was to leave computers on at night.

Despite indicating they turn off computers, a significant number of faculty and staff from Chemistry, ISR, and Rackham thought the policy was to leave computers on in the evening or leave the decision to the individual. With the exception of Rackham, more than a third from the other buildings were not sure whether there was a policy on computer use in their building.

20FS. Faculty participants were more uncertain than staff about guidelines for shutting down computers when leaving work.

There was also ambiguity about what to do with lights at the end of the day. A quarter said that the policy was to always turn off lights when leaving the room and another quarter said the policy was to turn off lights only at the end of the day. Overall, four in 10 were not sure if there was a policy on turning off lights and if there was one, what it was. However, Rackham participants were more likely to believe that there was a policy which was to turn off lights only at the end of the day.

20FS. Members of the faculty were more certain that lights should be turned off at the ends of the day than staff. Nonetheless, more than 4 in 10 were uncertain about a departmental policy regarding turning off lights. Ambiguity among staff was also apparent.

Awareness of Specific Energy Posters

21B. As noted, two-thirds of those in the pilot buildings were aware of UM’s poster campaign. They were less aware of the specific energy savings posters that the UM has placed in buildings in recent years. Just 44% said they had seen the earliest *Keep it Warm, Michigan Style* poster, a quarter had seen the *So Much Power* poster, and 58% had seen one of the recent *Use Your Power Wisely* posters. The latter poster series was most likely to be seen in ISR and in Rackham and least likely to be seen in Space Research.

The question about the newest *Save It-Drop It* poster was only asked of Fleming occupants since it was produced after the survey in the first four pilot buildings. Somewhat more than half (54%) from Fleming had seen it.

21FS. When faculty and staff in the initial four pilot buildings were presented with pictures of the *Keep it Warm, Michigan Style* poster, the *So Much Power* poster, and the *Use Your Power Wisely* posters, and asked if they had seen them, more staff members than faculty answered affirmatively to each one. The *Save It-Drop It* poster was seen by a somewhat higher proportion of staff than faculty.
15S. Less than a third of the students had seen each of the three posters presented to them. In each instance, first year students were least likely to have seen them and graduate students were the most likely to have seen them. For example, just 14% of the first year students were aware of the *Use Your Power Wisely* poster series; but 48% of the graduate students said they were aware of the series.

Participation in Energy Fest

22B. Only 2% of the faculty and staff in the pilot buildings had participated in an Energy Fest and 8% said “don’t know”.

16S. Participation in the Energy Fest by students was also low. Overall, 3% said they participated with the greatest participation among seniors and graduate students (6%).

Rating of UM’s Energy Conservation Efforts

23B. Overall, ratings of UM’s efforts at reducing utility costs were mixed. Somewhat more than 3 in 10 faculty and staff members from the pilot buildings rated UM efforts as good, and somewhat less than 3 in 10 said they were fair. One in 10 gave poor marks to the University’s efforts. The remainder (28%) said they were unable to assign a rating. Highest ratings were given by Rackham occupants while a third of the faculty and staff in Space Research and ISR did not know enough to rate UM efforts.

Ratings of UM’s leadership were equally mixed. One quarter of the faculty and staff indicated university leaders were doing a good job, another quarter said “fair” and 13% said “poor” or “very poor”. More than a third (38%) of pilot building occupants were unable to grade university leaders.

23FS. Faculty and staff were comparable in their assessment of conservation efforts in their units and at the university. Their ratings of UM’s leadership were nearly identical.

17S. Student ratings of UM’s utility reduction efforts were comparable to those of faculty and staff. Although they were somewhat more likely than faculty and staff to give higher marks to university leaders, a third of the students said they could not assess the performance of university leaders in the area of energy conservation.

Overall, one-fourth of pilot study participants said they were not able to rate utility reduction efforts within their respective buildings. Whereas a third of faculty and staff from Space Research and Fleming said efforts in their buildings were “good” or “very good”, a much higher proportion of Rackham participants rated utility reduction efforts within their building as good (75%). The poorest ratings were given by ISR and Chemistry faculty and staff (16% and 13% respectively).

Compared to faculty and staff in the Chemistry and in the Space Research building, a larger proportion of students said they were unable to rate utility reduction efforts within their respective buildings (26% versus 43%).
Evaluation of Specific Energy Posters

24B. Faculty and staff who had seen each poster were asked a series of questions assessing the poster’s impact. For each poster, approximately 6 in 10 participants said it attracted their attention “a lot” or “some” and a third said they had “read the poster thoroughly”. About half said they had “glanced at it”.

The effectiveness of each poster was questioned by faculty and staff. Only a third (35%) said the Keep It Warm, Michigan Style poster was “very effective” or “somewhat effective”. About 4 in 10 gave these assessments to the So Much Power poster and to the Use Your Power Wisely poster series.

24FS. Staff personnel were more likely than faculty to have read each poster thoroughly and to feel they were effective. They were somewhat more likely than faculty to think the overall poster campaign has been effective in influencing behavior.

18S. Students were somewhat more likely to think individual posters and the overall poster campaign are effective. Nearly half rated both the Keep It Warm, Michigan Style poster and the So Much Power poster “very effective” or “somewhat effective” and more than half (54%) said the Use Your Power Wisely poster series was effective. First year students gave the highest ratings to the latter; 69% said the series was “very effective” or “somewhat effective”.

Several focus group participants noted that the historic figures in the Use Your Power Wisely poster series were irrelevant. Many expressed a preference for shorter, more direct reminders of what people should and should not do regarding lighting and temperature.

The Save It-Drop It posters produced in late 2006 and shown to Fleming participants received the highest marks. About half (49%) said the posters were “very effective” or “somewhat effective”.

When asked about the effectiveness of the overall poster campaign aimed at influencing energy-conserving behavior, only 4 in 10 said the campaign was “very effective” or “somewhat effective”. Space Research participants were least likely to think the poster campaign was effective (36%) and Fleming participants were most likely to think the campaign was effective (58%). Overall, more than half of the faculty, staff, and students in the pilot buildings said the poster campaign was not effective.

Willingness to Accept Change

25B. A significant majority of faculty and staff would be willing to accept slightly less comfortable building temperatures under certain conditions. Three-quarters said they would do so if “it resulted in the reduced burning of fossil fuels at UM” and an almost equal number (72%) said they would do so if “the money saved by reducing energy costs was returned to the department or unit”. Although it was often mentioned in focus group
sessions as a motivator for engaging in appropriate energy-reducing behaviors, feedback on energy savings was less important to survey participants. Slightly more than half (54%) of the survey participants said they would accept less comfortable temperatures if “I regularly received updates on the energy savings in my building”. Participants in Space Research were most agreeable to less comfortable temperatures if the savings were returned to their department (80%) while Fleming participants were most agreeable to the less comfortable temperatures if they received feedback on energy savings (63%).

19S. Students in Chemistry and Space Research were also willing to accept slightly less comfortable building temperatures under certain conditions. Two-thirds said they would do so if “it resulted in the reduced burning of fossil fuels at UM” and half said they would do so if “the money saved by reducing energy costs was returned to the department”. Compared to others, graduate students were more receptive to the idea of energy cost savings being returned to their department; two-thirds agreed with this proposal.

Students were less enthusiastic than faculty and staff about receiving feedback on energy savings in their buildings. Less than half (46%) agreed to accept the less comfortable temperatures if “I regularly received updates on the energy saving in my building”. Upper class and graduate students were more receptive to feedback on energy savings than first year students and sophomores.

Students were most receptive to a financial incentive. Most (84%) said they would accept the lower temperatures if “it resulted in a reduced increase in my tuition bill”. First year students and sophomores were most likely to be receptive to this proposal (90%) while graduate students were least receptive (59%).

Willingness to Take Action

26B. Faculty and staff were more willing to accept less comfortable temperatures in the winter than in the summer. Whereas 8 in 10 said they would be willing to “accept cooler temperatures requiring warmer clothing during the winter months”, 7 in 10 said they would “accept warmer temperatures requiring lighter clothing during the summer months” Occupants in Fleming were most amenable to cooler winter temperatures while those in the Chemistry building were least amenable to warmer summer temperatures.

25FS/26FS. There were no significant differences in opinion between faculty and staff in their willingness to accept changes that would result in lower utility costs. However, faculty and staff differed in their willingness to take specific actions. Faculty participants for instance were somewhat more willing than staff to wear warmer clothing during the winter months (41% versus 35%). Staff participants on the other hand were more willing than faculty to work in buildings where temperatures were reduced during the evening hours; 69% of staff said “very willing” compared to 54% of the faculty.

20S. Students were less willing than faculty or staff to change their mode of dress to reduce energy use in UM buildings. Just two-thirds said they would be willing to accept cooler temperatures requiring warmer clothing during the winter months; the same
proportion said they would be willing to accept warmer building temperatures requiring lighter clothing during the summer months. Graduate students were more amenable to wearing lighter clothing during the summer months than others. More than 4 in 10 (42%) said they would be “very willing” to do so.

Faculty and staff were very willing to work in buildings where temperatures were reduced during the evening hours. Whereas more than 9 in 10 from ISR, Rackham, Space Research and Fleming said that reduced evening temperatures were acceptable, three-quarters of the Chemistry building occupants said reduced evening temperatures were acceptable.

Students were also willing to work in buildings where temperatures were reduced during the evening hours but less willing than faculty and staff (69% versus 91%).

Reduced corridor lighting was also acceptable to the majority of building occupants. Nearly 9 in 10 (87%) faculty and staff said they were “very willing” and “somewhat willing” to “work in buildings where lighting in the corridors would only go on when someone entered the space”. Students also expressed the same level of willingness to this proposal although juniors and seniors were somewhat less likely to find it acceptable.

27B. Study participants in Fleming were also willing to work in buildings where light sensors were used as a means of reducing energy costs. Nearly everyone said they would be “very willing” or “somewhat willing” to work in buildings “where lighting in kitchenettes would only go on when someone was in the space” or “where lighting in conference rooms would only go on when someone was in the space” Fleming participants were somewhat less willing to “work in an office if the lighting went on when you entered the space”; one in 10 said they were “not very willing” or “not at all willing” to do so. In each instance, administrative personnel in Fleming were more willing than their support staff to accept these conditions.

Preferred Media for Receiving Energy-Related Information

28B. Within each pilot building, email was the most preferred method for receiving information by faculty and staff. About two-thirds mentioned this media compared to half who wanted information about reducing energy costs shared at departmental meetings. The third most preferred media was a website (43%) followed by posters (35%) and interdepartmental mail (31%).

28FS. A somewhat larger proportion of staff participants than faculty mentioned “email” as a preferred way of receiving information and a significantly larger proportion of them mentioned “announcements at departmental meetings”.

21S. Students have different priorities for media through which energy-related information should be received. Nearly two-thirds mentioned the newspaper (presumably The Michigan Daily) compared to a UM website (56%) and posters (48%). Email, the most preferred method for receiving information among faculty and staff (65%) was
preferred by only 40% of the students. Graduate students were more likely to prefer email compared to first year students and sophomores.

Focus group sessions with faculty and staff revealed the type of information wanted. Participants most often mentioned the need to know what appropriate behaviors they should engage in regarding the use of lights and when and if computers should be turned off.